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I

I. INTRODUCTION

Missile flight and performance characteristics are investigated using
several different types of testing, including actual flight tests, laboratory
tests of major system components, and computer simulation studies. For example,
in addition to flight tests, extensive laboratory tests of the electronic sub-
systems and wind tunnel tests of the airframe are conducted. Computer simula-
tion models may be used to gain further information about missile performance
variability at a particular set of flight conditions (such as target type,
speed, altitude, and maneuver; environmental factors including windspeed, tem-
perature, and visibility, etc.), or they may be used to explore sets of con-
ditions where no flight tests have been performed. Various types of computer
simulation models have been used in analyzing missile systems, including pure
digital simulators, hybrid digital-analog simulators, and hardware-in-the-loop
simulators.

Model validation is an important aspect of using computer simulation as
part of the test program for a missile system. By validation we mean an
investigation of the consistency of the simulation model with the real missile
system. Successful validation provides a basis for confidence in the model's
results, and is a necessary step if the model is to be used to draw inferences
about the behavior of the real missile. A reasonable definition of validity is
that a set of input conditions to the model should produce output similar to
that produced by the real missile system when it was exposed to the same input.
Consequently, methods for comparing computer simulation model output to data
generated during actual flight tests are typically used for model validation.

This paper is a review of methods useful for validation of computer simu-
lation models of imsile systems. Most of these methods discussed are
statistically-based. For other more general discussions of the validation
question, see Naylor and Finger (17), Van Horn (23)(214), and Iheir and Holmes
(12).

:II. VALIDATION METHODOLOGY

Missile performance data may be classified as either static or dyao.
Examples of static performance data are kill probabilities and terminal miss
distances. Dynamic performance characteristics are output phenomena that vary
continuously during missile flight, such as roll position, roll rate, wing
deflection, system gain and phase, and various guidance system parameters.
These characteristics are usually expressed as time series. We now briefly
describe some of the more important validation techniques, and provide a list of
references that discuss the procedures in more detail.

Static Data Analysis Methods - Many published discussions of simulation
model validation focus on static output analysis. Standard statistical proce-
dures, suoh as hypothesis testing methods, confidence intervals, and regression
analysis, can be used in this context. There are also a number of statistical
techniques developed especially for use n the simulation environment.

The specific statistical methodology used depends on the type of simula-
tion model. For example, if Monte Carlo simulation is used, then by the process
of replication using different random number seeds different realizations of the
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output variable, say xjjx2,..,x n can be obtained. These observations may be
viewed as a random sample from some population f(x) with mean v and variance a2 .
The sample mean and sample variance x and 32 are unbiased estimators of )j and
a2 , and if the distribution f(x) is not too different from the normal distribu-
tion, then relatively standard statistical methods may be used to draw inferen-
ces about these parameters. Thus if x is terminal miss distance, then an
approximate 100 (1-a) percent confidence interval on mean terminal miss distance
is

x tct/2,n-lS/1r < I < x + ta/2,n-l lr

where ta/2n..l is the upper a/2 percentage point of the t distribution with n-i
degrees of freedom. Comparison of this confidence interval with design specifi-
cations or with values observed in flight test may prove helpful in assessing
the validity of the model. For an introduction to statistical methods in data
analysis, see Hines and Montgomery (8), Montgomery (13), and Draper and Smith
(4). An example of the use of statistical methods in simulation model valida-
tion is in Naylor, Wallace and Sasser (18).

When the simulator is nonstochastic or when replication is prohibitively
expensive, statistical methods can still be helpful in parameter estimation.
For example, if the simulator produces a sequence of time-oriented observations
on the variable of interest, then one may obtain reasonably good estimates of
the mean and variance and confidence intervals either by approximating the out-
put as an autoregressive process and obtaining estimates of the parameters using
time series methods or by breaking the output stream into k batches and treating
the mean of each batch as a single observation. This latter approach is often
called the method of batch means. For further details, see Fishman (5).

Goodness of Fit Testing - This approach to model validation involves testing the
hypothesis that the entire sample of data generated by a computer simulation
model has the same probability distribution as the sample of data observed in
the flight test. Thus our attention is now focused on the conformance of the
entire distribution of sample data from the simulation with the flight, and not
just on the parameters of these distributions. The two-sample Kolomogorov-
Smrnov test is a distribution-free test that is highly useful in this regard.
For further reading on goodness of fit testing, see Conover (3).

Goodness of fit testing may often be viewed as an improvement over static
data analysis methods for validation. It is entirely possible that two distribu-
tions have identical sample moments (or means and variances) but differ con-
siderably in shape. Goodness of fit testing is designed to help detect such a
situation. Its only weakness is that most goodness of fit tests require inde-
pendent observations (random samples) and many computer simulations produce out-
put stream that are highly autooorrelated. Consequently, this autooorrelation
may render the goodness of fit testing approach less useful.
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Time Series Analysis Method - The output variables of interest in many studies

of missile systems is represented by a time series. Let xt be the time series
of interest observed in the actual flight test and Yt be the corresponding time
series generated by the computer simulation model, t-l,2,...,T. These time
series are usually highly autocorrelated, and may exhibit other internal struc-
ture (such as non-stationarity, the presence of deterministic components, etc.).
To validate the computer simulation model, we must test the hypothesis that the
two time series x t and yt are equivalent.

A variety of methods can be used to compare the time series xt and yt. In
the validation of missile system, nonstatistical methods are sometimes used.
The most common method of nonstatistical comparison involves plotting the time
series xt and yt, overlaying the plots, and sliding them along until as close a
match as possible is obtained. Then the analyst determines subjectively whether
or not the output time series from the simulator agrees with the flight test
results. A major difficulty with this approach is that it does not quantify the'
risk associated with any decision, and it is entirely possible that different
analysts will arrive at different conclusions.

Another nonstatistical procedure sometimes used in validating computer
simulation models is Theil's inequality coefficient (19)(20)(21). This coef-
ficient is an index which measures the conformance of one time series with
another. Theil's inequality coefficient has been extensively used to validate
computer simulation models of missile systems (for example, see Kheir and Holmes

(12)). While this procedure is more quantitative than simple visual comparison
of time series, there is no standard distribution theory for Theil's inequality
coefficient, and so no statistical statements relative to the conformance of the
two time series can be made.

Several statistical methods may be useful in comparing time series. One
approach is to fit an appropriate stochastic model to xt and yt, usually an
autoregressive integrated moving average model (see Box and Jenkins), (2), and
then compare the two models. If the two models are the same, the inference is
that the two time series are the same. A test for the equivalence of two time
series models is described by Hsu and Hunter (10), who also illustrate the use
of the procedure in validating a computer simulation model of an airport.
Unfortunately, the two time series could have been generated by the same
underlying stochastic model and still differ significantly in certain charac-
teristios, particularly over the relatively short records typically associated
with time series obtained from missile systems. For example, the two series
could be significantly out of phase, and yet both could have been generated from
the same AR(2) model (say). Furthermore, differences in phase angle, gain and
frequency usually have specific interpretations to the missile designer.
Therefore, he would like to know if such differences are present.

Spectral methods have been suggested by many authors for validation of
*computer simulation models (6)(14)(18). The general approach consists of com-

paring the sample spectra of the simulation model output and the corresponding
flight test data to infer how well the simulation matches the flight.

The spectrum of a time series xt, say #xx()), is a decomposition of the
total variance of the series by frequency over the interval 0 . w W. Thus
0=(0) measures the variance contribution to xt at frequency w. The spectrum is
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related to the autocovariance function of a wide-sense stationary time series by
the relationship

=xx(w) - 0  + 2 k-i Yk cos(wk)

where {Yk},k=O,1,2,... is the autocovariance function of the time series xt.
Thus the spectrum is the Fourier cosine transform of the autocovariance func-
tion. The spectrum is estimated by the sample spectrum

f ,x (W ) - 0 c 0 + 2 k 11'k coB (w ik) (2)
k-i

where fxx(wj) is an estimate of the spectrum averaged over a band of frequencies
centered at w = wj/m, J=,l,...,m, m is the number of frequency bands esti-
mated, Xkt-d,l,...,m are a set of constants or weights, and

1 T-kck m"- t 1 (x t _ ; ) (x t+k - ,k-1, 2, ... ,m

is the sample autocovariance function. The weights {X ki depend on the type of
spectral window used in the estimation process (see Fuller (7) and Jenkins and
Watts (11)1. Spectral windows are employed to give a smoother estimate of the
spectrum.

Let fn(WJ) denote the sample spectrum of the flight test data and fyy(wj)
denote the sample spectrum of the simulation output. To compare these spec ra
at a specific frequency construct a 100(1 - a) percent confidence interval on
the ratio of the true spectra, say $,n(wj), using

a12k,k _lxx( y 1-ct/2,kk (3)

J-0,1,2,... ,m

where Fk k is the pth percentage point of the F distribution with k 2T/m
degrees of freedom in the numerator and denominator. This succession of con-
fidence intervals at the frequency points wj, J=O,1,...,m is called a confidence
band. If the upper and lower confidence limits contain the value 01 02 '-
- 1, then we conclude that at that frequency the two time series are identical.

For the time series to be identical, their spectra must be equal at all
frequencies wj, jaOl,...,m. The simultaneous confidence band allows us to
state with a probability at least 1-a that all m+l confidence intervals are
simultaneously true. The 100(1-a) percent simultaneous confidence band is com-
puted from

6



(4)

For example, if we wished to make the statement that all n+l frequencies are
simultaneously equal with a probability of at most 0.05 (that is, a 95 percent
simultaneous confidence interval), then the probability level associated with
the f-value at each frequency is 0.05/2(m+1) a 0.025/(3.l). Thus if there are
16 bands in the sample spectrum, then

0.025 = 0.00156
16

probability to each tail of the F distribution. Note that the simultaneous con-
fidence band (4) is wider than the single confidence interval (3) at any fre-
quency. For an application of this methodology to the validation of a computer
simulation model of a missile system, see Montgomery and Conard (14).

In constructing confidence intervals, the analyst must specify a, the
Type I error rate. In other words, a is the probability that we will conclude

that the simulation and flight-test data differ when they really do not. A

reasonable range of values is 0.01 < C < 0.10. Values of a > 0.1 imply that
it is relatively easy to find that the flight test and the simulation differ
when they really do not, while values of OL < 0.01 imply that it is easy to
conclude that the flight test and the simulation match when they really do not.

Note that the confidence intervals (3) and (4) become wider as a becomes
smaller. Thus very small values of Ox make it easier to conclude that the two

time series agree.

Spectral methods can be applied only to a stationary series. If the series
is nonstationary, then the nonstationary part of the process must be removed,
either by successive differencing or by fitting a polynomial model (or other
appropriate function) to the data and analyzing the residuals. Plecewise poly-
nomial fitting may be necessary when the time series exhibits different behavior
in different local segments of time. This may be conveniently done using
splines. Several useful references are in Draper and Smith (4). Indications of
nonstationarity are usually observed in either the sample autocorrelation func-
tion or the sample spectrum. If the autocorrelation function does not die down
even at very long lags or if the power is concentrated at the lowest frequency
in the spectrum, then the series is probably nonstationary. Note that if two
nonstationary series xt and yt are compared, they are equivalent in a frequency
sense if both their stationary representations have the same spectrum and if the
same level of differencing (or the same order polynomial) is required to reduce
both of them to stationarity.

Internal Validity Checking - While simulation-to-flight test comparisons form
the basis of simulation model validation, it is also usually necessary to vali-
date the internal logic of the simulation model. Spectral methods can be useful
in this aspect of validation also. These techniques can be used to investigate
the interrelationships between two time series generated by the simulator. For
example, suppose that the computer simulation model produces time series output



of fin deflection and airframe lateral acceleration. The lateral accelerations
are a physical result of the fin deflections and the nonlinear aerodynamic
response of the airframe. Causal or correlative structure between these two
time series should be reflected in the analysis.

Interrelationships between two time series xt and Yt are based on the

cross-spectrum. The cross-covariance function is

y X(k) - E(x t- x) (yt+k - tjY' ()

where x and y are the means of xt and yt respectively. Unlike the autocorre-

lation function for a single time series, the cross-correlation function xy(k)
may not be symmetric about zero. The cross-spectrum is defined as

1 V Iw (6)

Note that xy( ) is a continuous periodic function of (the frequency). Since
xy(k) may not be symmetric about zero, the cross-spectrum is in general a
complex function, say

60) , C % ( 0) - I qxy(to)
*Y (w- wY i~~~ (7)

where Cxy( ) is the coincident spectral density (oospeotrum) and qxy( ) is the
quadrature spectral density. Both Cxy( ) and q-( ) are real-valued functions
of . Cxy( ) is the cosine portion of the trans1orm and is an even function of

, while qxy( ) Is the sine portion of the transform and is an odd function of
Lot f .) denote an estimate of the oroes-spectrum and, let Cxy( ) and

qX7 ( ) denote the estimates of Cxy( ) and qrv( ) respeotively. For an introdue-
tlon to the estimation problem see Fuller (7) and Jenkins and Watts (11).

The scwuaed ooherepoy Is defined as

2  ;--To)~ (8)

where

2 21

l%(,1= (4) + qx .j~



and 0(w) and y (w) are the spectra of xt and Yt, respectively. The coherency
is analogous to the coefficient of multiple determination R2 in multiple
regression. Thus coherency is a measure of independence of x t and Yt at fre-
quency w. If coherency is 0, then the series are independent (unrelated), while
if coherency is 1, then the series are perfectly dependent (related). Coherency
is a nondimensional measure of the correlation between two time series as a
function of frequency. Another way to think of coherency is in terms of the
predictability of one series from the other. If coherency is 0, then one series
cannot be predicted from the other, while if coherency is 1, one series can be
perfectly predicted from the other. We may also think of coherency as the pro-
portion of the total power (by frequency) in one time series that can be
explained by the other time series.

An F-test for zero coherency is given by

4d i2 Ma
Fo 4 ( (9)

.,
2[1 - K (w)]

which if K2xy(w) = 0 is distributed as F2 ,4d , where d is the number of points at
which the spectrum is estimated, and

A2 f (wo) [

W ( f (W),, (10)
fxx (t) yy W

is an estimate of coherency. If F0 > Fa 2 4d, the hypothesis of zero coherency
is rejected. While the limiting values of coherency, 0 and 1, are of obvious
interest, intermediate values are also of interest because of the natural
interpretation of coherency as a "percent variability explained". If the
coherency function is greater than zero but less than unity, one or more of
three possibilities exist

1. Extraneous noise is present in the measurements,

2. The system relating xt and yt is not linear, or

3. yt is an output related to the input xt as well as to other inputs.

The gain of yt over xt is defined as

[ 2  2 1/2
A M C M .qxyw)](11)

G XY(a) -X(W

9
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The gain behaves like a regression coefficient in the regression of y on x

through the origin, but it is now evaluated at frequency w. That is, gain

measures the increase in amplitude of Yt over that of xt at frequencyw. One

may construct a lO0(l-) percent confidence interval on gain, using

max{O AiX (Wc) - A)<G X(w) < 8(w)M + A
(12)

where

A = [(2d + l)-i f (W)fz(w)F 1/2
xx ZZ a, 2,4d

( 2 2 1/2A (w=[ xy (wf q M

and

fzz(W) =fyy(w)[1 - i2y(w)] 2d+l

The phase spectrum is defined as

(13)

¢ X()- tana- [-qxy(w)/Cxy(w)]

and estimated by

$x(w)- tan I [-A(w)/axy()].

(14)

The phase spectrum shows whether the frequency components in one series lead or
lag the components at the same frequency in the other series. If the coherency
is zero at frequency w, that implies that a 100(1--a) percent confidence interval
on the phase angle is (-w/2, w/2). That is, the average phase difference bet-
ween the two processes Is zero, but the phase difference is equally likely to
lie anywhere in the range (-n/2, 7/2). If coherency is not zero, then a
100(1-.a) percent confidence interval is

*XY (W) - ( < ,(c) < $x(w) + 1, (5)

10
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where

6 i 1  [ta4d 4di ]W
Generally speaking, the cross correlation structure between two time

series can be adequately described by their squared coherency and phase spectra.
Therefore, it is recommended that internal validity checking concentrate on
these measures.

Screening and Preparation of Data - A potentially frustrating problem for the
data analyst is dealing with wild or unusual observations in either the observed
flight data or the simulation data. These wild or aberrant observations may
severely distort the sample spectrum or estimates of the parameters of the
underlying distributions. Often we find that some type of data editing or pre-
liminary screening of the data is necessary.

Two approaches are useful in this regard. The first of these is to smooth
the data with a nonlinear robust filter to eliminate spikey noise. The more
popular nonlinear smoothers are usually based on running medians (see Tukey (22)
and Velleman (25). A second approach is to fit a model to the data that descri-
bes the smooth portion of the signal. Fitting methods more robust than least
squares are recommended in this approach. It is well-known that least squares is
severely distorted by outliers. Robust fitting procedures are discussed by
Hogg (9). Agee and Turner (1) describe the use of these methods in prepro-
cessing of missile trajectory data.

Examples - The validation and analysis methodology presented in the previous
sections has been implemented with a FORTRAN IV computer program. This program
and its operation are described in more detail in the Appendix. In this section
we will illustrate the use of the methodology with several examples.

Examples Using Simulated Data - In order to check program operation and investi-
gate the effectiveness of the proposed methods, sample time series were
generated from stochastic processes having known spectral properties. The abi-
lity of the procedure to produce sample spectral estimates matching the popula-
tion values reasonably closely is then investigated.

A plot of two realizations of length 200 from the AR(2) process

x t - t 1 -0.5x t-2 + a t

2

a ,It a



is shown in Figure 1. The theoretical autocorrelation function and
spectrum are shown in Figure 2. The sample autocorrelation functions for both
realizations are shown in Figures 3 and 4. Both plots exhibit the charac-
teristic pseudocyclic decay associated with the AR(2) process. Figures 5 and 6
present the smoothed spectral estimates for truncation points of m - 8, 16, and
32. At m = 8, the low-frequency power in the series is easily seen, but there
is no indication of the peak. Increasing m to 16 gives some indication of the
peak for both realizations. At m - 32, other peaks occur because of the
increase in variance of the estimate. While it is difficult to obtain a good
estimate of a narrow two-sided peak with a realization of length 200, we
conclude that m = 16 or perhaps m = 24 would be adequate to show the major
features of the spectrum.

A comparison of the two spectra using equations (3) and (4) with a trun-
cation point m = 24 is shown in Table 1. Individual 95 percent confidence
limits on the ratio of the spectra are shown in columns (e) and (f), while the
corresponding simultaneous confidence limits are shown in columns (g) and (h).
The simultaneous confidence limits indicate agreement between the spectra at 21
of the 25 tabulated points, and only one of the four missmatched points
corresponds to a frequency in the spectrum having significant power.
Considering the difficulty in estimating a spectrum with a narrow Lwo-sided
peak, we conclude that there is no strong evidence that the two series are not
realizations of the same underlying stochastic process.

The second simulated example consists of 100 realizations of the bivariate
linear process

x t - 0.6xt-1 - 0 .5yt_ 1 + at

Yt - 0 "4xt 1 + +bt

at " NID(0,I), b t -- NID(0,1)

described in Jenkins and Watts (11). Both series are plotted in Figure 7. The
sample autocorrelation functions and spectra (with truncation points m us 8, 16
and 32) for xt and yt are shown in Figures 8, 9, 10, and 11, respectively. Note
that although the bivariate process is first order, the autocorrelation function
and spectrum resemble those of a second-order univariate process. Furthermore,
both series have the same general behavior, with a peak or trough in xt followed
by a corresponding peak or trough in yt after one or two observations. This is
confirmed from inspection of the sample cross correlation function shown in
Figure 12, which shows larger spikes at positive lags 1 and 2.

The comparison of the univariate spectra is shown in Table 2, based on the trun-
cation point m z 16, and with a significant level of 95 percent. Inspection of
the simultaneous confiderce limits in columns (g) and (h) reveal that the two
series closely agree.

12



Plot of original series
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Plot of autocorrelat ton.

1.00

8.001-01-

6.001-01-

4.0-1

A
U 2.001-01-

0

R I
R _2.001-01

L

-4.01-01-

-6.001-01-

4.00-01-

1.001+10
LAG

Figure 3. Sample ACF of Realzation onI

I-8.
~....,r .-A



Plot of autocorrelat ions
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Spectrum of series 1 and 2
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Spectrum of series 1 and 2

21. 60"0

-- - - -

1.400140

1.2 0E+00 -

C

00 U
M 8.009-01

6.001-01- 
---

4. 002-01 - - -

2.O0E-01

0.
o. 3.14E-128-01 9.42E-01 1.6+01.57E1.88+0 2.20E+02.14 0 2.83E0 4 E+0

IIREQUEMCY (RADIANS)

Figure 6. Spectral Estimates for yt.



Plot of original series
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Plot of autocorrelat tone
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Plot of autocorrelations
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spectrum of series I and 2
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Spectrum of series I and 2
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Plot of cross correlation
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TABLE 1
ComDarison of SDectra

(a) (b) (c) (d) (e) (f) (g) (h)
FREQ X SPECTRUM Y SPECTRUM RATIO INDIV CI LB INDIV CI UB SIMU CI LB SIMU CI uiB
0.000000 1.361527 1.644083 .828137 .553752 1.238480 .1437674 1.566946
.020833 1.326784 1.713186 .774454 .517856 1.158197 .409302 1.465369
.041667 1.133410 1.475656 .768072 .513588 1.148652 .405929 1.453293
.062500 .838198 1.453755 .576575 .385539 .862268 .304722 1.090956
.083333 1.268663 1.603301 .786292 .525772 1.175901 .415559 1.487769
.184167 1.322648 1.762093 .750612 .501913 1.122541 .396702 1.420257
.125000 .889412 1.543782 .576126 .385239 .861597 .304485 1.090106
.145833 .789594 1.718659 .459425 .307204 .687070 .242808 .869292
.166667 1.125775 1.173977 .958941 .641217 1.434097 .506804 1.814443
.187500 .899432 .660522 1.361699 .910530 2.036423 .719664 2.576515
.208333 .656709 .415672 1.579871 1.056416 2.362699 .834968 2.989325
.229167 .401155 .196577 2.035109 1.360821 3.043508 1.075564 3.850696
.250000 .236488 .155779 1.517973 1.015026 2.270131 .802255 2.872206
.270833 .272040 .128775 2.112519 1.412583 3.159275 1.116475 3.997166
.291667 .192898 .090467 2.132247 1.425774 3.188778 1.126901 4.034494
.312500 .076704 .056107 1.367091 .914135 2.044486 .722513 2.586717
.333333 .067223 .079530 .845254 .565198 1.264078 .446720 1.599332
.354167 .089081 .100406 .887214 .593255 1.326830 .468896 1.678727
.375000 .089630 .056462 1.587441 1.061478 2.374021 .838969 3.003650
.395833 .088248 .046995 1.877841 1.255660 2.808313 .992447 3.553124
.416667 .087765 .049912 1.758406 1.175797 2.629699 .929325 3.327138
.437500 .091341 .059653 1.531198 1.023869 2.289909 .809244 2.897230
.458333 .076655 .064972 .902116 .603221 1.349118 .476773 1.700728
.479167 .056912 .078205 .727736 .486617 1.088330 .3P4611 1.376972
.500000 .051164 .049253 1.038801 .694617 1.553528 4,LO i.965549
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TABLE 2
Comparison of Spectra

(a) (b) (a) (d) (e) (f) (g) (h)
FREQ X SPECTRUM Y SPECTRUM RATIO INDIV CI LB INDIV CI UB SIMU CI LB SIMU CI UB
0.000000 .851406 1.079992 .788345 .480849 1.292479 .370523 1.677326
.031250 1.014157 1.208320 .839311 .511936 1.376038 .394477 1.785765
.062500 1.339823 1.366438 .980522 .598067 1.607551 .460846 2.086213
.093750 1.727075 1.436993 1.201867 .733076 1.970443 .564879 2.557159
.125000 1.516686 1.270897 1.193398 .727910 1.956558 .560898 2.539139
.156250 .916654 .841212 1.089683 .664650 1.786519 .512152 2.318470
.187500 .897975 .591308 1.518624 .926281 2.489762 .713755 3.231109
.218750 .809345 .474889 1.704283 1.039523 2.794147 .801015 3.626128
.250000 .443885 .287546 1.543914 .941706 2.531224 .725641 3.284916
.281250 .280113 .182383 1.535845 .936785 2.517994 .721848 3.267748
.312500 .179058 .138035 1.297416 .791355 2.127094 .609786 2.760453
.343750 .173903 .218852 .794613 .484672 1.302756 .373469 1.690663
.375000 .191589 .194449 .985295 .600978 1.615376 .463089 2.096367
.406250 .183002 .151299 1.209537 .737754 1.983018 .568484 2.573478
.437500 .168183 .188995 .889878 .542779 1.458942 .418244 1.893354
.468750 .151892 .181256 .837998 .511135 1.373884 .393860 1.782970
.500000 .125002 .122926 1.016882 .620245 1.667163 .477935 2.163574
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The cross correlative nature of the two series can be investigated by
decomposing the cross spectrum into squared coherency and phase components. The
theoretical coherency and phase spectra for the bivariate linear process are
shown in Figure 13. Figures 14 and 15 show the corresponding sample spectra.
The sample coherency spectrum in Figure 14, based on a truncation point of m
16, shows reasonably stable behavior and agrees closely with the theoretical
spectrum. The most important features of the coherency spectrum is the single
large peak and the tendency toward zero at both low and high frequencies. Thus,
the majority of the correlation between the two series is centered in the mid-
range frequencies. The sample phase spectrum, Figure 15, shows good agreement
with the theoretical phase spectrum. The phase spectrum shows that low fre-
quency components of xt lag those of Yt by approximately 90 degrees but that
the phase difference tends to zero at higher frequencies.

An Example Using Real Data - We will now illustrate simulation model validation
using time series data from a control variable for a typical missile. Figure 16
presents 800 realizations of simulation data (dashed line) and flight test data
(solid line). The visual impression is that both series agree closely. The
autocorrelation functions and spectra, shown in Figures 17, 18, 19, and 20 are
typical of those associated with AR2) processes. Each spectra is computed
using truncation points of m = 8, 16, and 32. There is evidence of a narrow
peak in the low frequency range.

Table 3 presents the statistical comparison of the spectra for a trun-
cation point of m = 32. The 95 percent simultaneous confidence limits, shown in
columns (g) and (h), indicate that at all points in the spectrum containing
significant power there is good agreement between the simulation and flight test
data. The only simultaneous confidence limits that do not include one are at
higher frequencies where the power is low. We conclude that the simulation
model and the flight test data are substantially equivalent.

2
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Figure 13. (a) Theoretical Squared Coherency Spectrum and
(b) Phase Spectrum for the Bivariate Linear Process.
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plot of coherency
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Figure 14. Sample Coherency Spectrum for the Bivariate Linear Process.



Phase of the cross spectrum
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Figure 15. Sample Phase Spectrum for the Bivariate Linear Process.
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Plot of original series
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Figure 16. Simulation and Flight Teat Data from the Missile



Plot of autocorreistions
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Figure 17. Sample ACF, Simulation Data.
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Plot of autocorrelations

1.00Z+00

6.01E-01

4.01

A
U1 2.001-01-
T
0
C 0
0
R
R -2.O01
E
L

-4.001-:1

-6.00"-

-8.001-0l

LAC
Figure 18. Sample ACT, Flight Test Data



Spectrum of series I and 2
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Figure 19. Sample Spectral Estimates, Simulation Data.
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Spectrum of series 1 and 2
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Figure 20. Smoothed Spectral Estimates, Flight Test flats.



TABLE 3
C(p arison of Spectra

(a) (b) (a) (d) (e) (f) (g) (h)
FREQ I SPECTRUM Y SPECTRUM RATIO INDIV CI LB INDIV CI UB SIMU CI L. SIMU CI UB
0.000000 5.732432 5.642977 1.015852 .717275 1.438717 .577091 1.788205
.015625 5.737348 5.688931 1.008511 .712091' 1.428319 .572920 1.775281
.031250 7.760088 7.678939 1.010568 .713544 1.431233 .574088 1.778902
.046875 11.245462 10.983929 1.023811 .722894 1.449988 .581611 1.802213
.062500 14.743461 14.166088 1.040757 .734860 1.473989 .59123 1.832045
.078125 13.336826 12.569905 1.061012 .749162 1.502676 .602745 1.86770
.093750 10.872416 9.949193 1.092794 .771602 1.547687 .620800 1.923645
.109375 12.208082 10.739831 1.136711 .802611 1.609885 .645748 2.000952
.12500 12.066034 10.281119 1.173611 .828666 1.662145 .666711 2.065907
.140625 7.427049 6.099890 1.217571 .859705 1.724404 .691684 2.143290
.156250 4.282530 3.345625 1.280039 .903812 1.812875 .727171 2.253252
.171875 2.856734 2.104529 1.357422 .958451 1.922471 .771131 2.389470
.187500 1.866200 1.294401 1.441747 1.017992 2.041898 .819035 2.537908
.203125 1.212969 .782643 1.549838 1.094312 2.194982 .880440 2.728179
.218750 .823493 .495703 1.661261 1.172987 2.352788 .943738 2.924318
.234375 .626774 .339631 1.845453 1.303041 2.613653 1.048374 3.248551
.250000 .620323 .307346 2.018323 1.425102 2.858482 1.146579 3.552853
.265625 .693298 .305548 2.269033 1.602123 3.213554 1.289004 3.994178
.281250 .558139 .232748 2.398043 1.693215 3.396266 1.362292 4.221274
.296875 .342962 .124896 2.745978 1.938886 3.889035 1.559949 4.833745
.312500 .287230 .096847 2.965808 2.094104 4.200374 1.684831 5.220712
.328125 .247898 .066223 3.743357 2.643117 5.301589 2.126545 6.589430
.343750 .232529 .057772 4.024955 2.841948 5.700406 2.286517 7.085127
.359375 .187192 .036992 5.060399 3.573057 7.166871 2.874737 8.907819
.375000 .177687 .033696 5.273248 3.723345 7.468321 2.995653 9.282496
.390625 .180469 .019926 9.056866 6.394890' 12.826931 5.145070 15.942798
.406250 .152544 .017450 9.314790 6.577006 13.192221 5.291593 16.396823
.421875 .135968 .005899 23.050089 16.275253 32.645058 13.094411 40.575066
.437500 .157999 .010196 15.495962 10.941420 21.946405 8.803025 27.277539
.453125 .121465 .002200 55.201096 38.976502 78.179438 31.358918 97.170475
.468750 .122542 .005398 22.701789 16.029325 32.151774 12.896548 39.961954
.484375 .108422 0.000000 22.701789 16.029325 32.151774 12.896548 39.961954
.500000 .098980 .003867 25.596934 18.073535 36.252068 14.541236 45.058276
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APPENDIX

COMPUTER PROGRAMS

The COMP Program were written in FORTRAN IV extended for implementation
on the CDC CYBER 74, utilizing a Tektronix 14014 Graphics Terminal. Routines
from the International Mathematical and Statistical Libraries (IMSL) and the
Directorate for Management Information Systems (DMIS) General Purpose Computer
Subroutines (ALTLIB) augment the standard CDC Library Routines. The programs
were designed to be run in the interactive mode with a minimum core requirement
of 1100008.

The first program, COMPI, is a preprocessor. Using it, the analyst may
determine the "best" set of conditions (smoothing, differencing, window size,
etc.) for running the full spectral analysis program. COMP1 plots the original
series and calculates the autocorrelations. Depending on the interactive com-
mands, one or both of the following options may be selected,

(1) smooth the data using either a running median scheme or a median/
hamming technique

(2) difference or fit a curvilinear regression model to original or
smoothed series.

The spectrum for the original series, the differenced or the residuals from the
curvilinear fit is then calculated and plotted.

A haming window is used for the spectrum calculations. Three spectral
window sizes (eg. 8, 16, 32) are allowed. The curvilinear regression routine,
as set-up in COMPI, fits a model of the form

yt O + Bt + Bt 2 + a3z 
+ a

where

0t t t*

ztZ

t-t* •t > t*

and t t is the t value at which a change in the curve is observed.

This program calculates the Durbin-Watson statistic, the basis of a test
of autocorrelation in regression analysis (see Draper and Smith) (4). In addi-
tion, the value of Theil's Inequality Coefficient (TIC) along with Measures for
use in determining if the difference between the two series is a result of a
time lag, scale or bias error are provided.
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The second and third programs, COMP2 and COMP3, are run, using the
experience gained from running COMPI, for the full spectral analysis. COMP3
makes the same calculations as COMPI and calculates both the 100(1-a) percent
individual and simultaneous confidence intervals on the ratio of the true
spectra, the coherency function, the cross spectra, phase and gain. This
program is particularly useful when comparing series for some causal rela-
tionship. If there is no interest in the interrelationship between the two
series one may run COMP2. COMP2 does not output the cross spectral results.

Input to these programs is from the disc (TAPE1, TAPE 2, TAPE 3) and the
console. TAPE 1 and TAPE 2 are data files. TAPE 3 contains the labels to be
used with the graphics, the format for reading the data files, etc. The
following is an example of the structure of TAPE 3:

0 0.
(F14.8)

LAG AUTOCORRELATION FREQUENCY SPECTRUM
MAGNITUDE SERIES TIME COHERENCY
PLOT OF AUTOCORRELATIONS PLOT OF ORIGINAL SERIES
PLOT OF DIFF/DETREND SERIES SPECTRUM OF SERIES 1 AND 2
CROSS SPECTRUM OF THE SERIES PHASE OF THE CROSS SPECTRUM
PLOT OF GAIN PLOT OF COHERENCY

RECORD 1
ISKIP, XSTAR I10, F10.0

RECORD 2
DFORM 8AIO

RECORD 3
ALl, AL2, AL3, AL4 8A1O

RECORD 4
AL5, AL6, AL7, AL8 8A10

RECORD 5
TITL1, TTTL2 6A10

RECORD 6
TITL3, TITL4 6A10

RECORD 7
TITL5, TITL6 6AlO

RECORD 8
TITL7, TITL8 6Alo
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LIST OF INPUT VARIABLE NAMES

ISKIP - Number of RECORDS to skip on the data files

XSTAR - Regression breakpoint

DFORM - Format for reading the data files

NV - Number of variablea in the data for each series, NV is L.E.2

ISIZE - Number of observations for each variable ISIZE is L.E. 250

X,Y - NV x 250 data arrays

MS - Number of the variable to compare

ISM - Smoothing indicator, 1 = YES, 0 = NO

ICNT - Type smoothing, 1 a MEDIAN, 2 = ED/HAMMING

K - Number of autocorrelations to compute or number of lags
for FTFREQ

ID - Difference/spectra plot/analysis complete indicator

ALI,AL2,...,AL8 - Labels for ABSCISSA and ordinate of plots

TITLI,...,TITL8 - Titles for plots

Output is both printed format on file output and special graphics.
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